Deretgeometri tak hingga bersifat konvergen atau memiliki limit jumlah jika dan hanya jika dan limit jumlah ditentukan dengan rumus: S = a/1-r. Contoh Soal. Pada sebuah barisan geometri diketahui diketahui bahwa suku pertamanya 3 dan suku ke-9 adalah 768, maka suku ke-7 barisan itu sama dengan . Diketahui: a=7. U9 =768. U 7 = 3 x (2)6 = 192
Yuk, kita mempelajari barisan geometri, deret geometri, dan deret geometri tak hingga! Seperti apa bentuknya dan bagaimana rumus-rumusnya? Simak artikel berikut ini, ya! — Jika kamu sudah membaca artikel tentang barisan dan deret aritmatika, kamu pastinya sudah tahu manfaat dari mempelajari konsep barisan dan deret dalam matematika. Nah, selain barisan dan deret aritmatika, ada satu lagi nih, yang mau kita bahas di artikel ini, yaitu barisan dan deret geometri. Apa itu barisan dan deret geometri? Apa sih, perbedaannya dengan barisan dan deret aritmatika? Oke, supaya kamu nggak bingung, yuk langsung baca penjelasannya di bawah ini! Barisan geometri adalah pola yang memiliki pengali atau rasio yang tetap untuk setiap 2 suku yang berdekatan. Rasio pada barisan geometri biasa disimbolkan dengan r. Barisan geometri juga biasa disebut sebagai barisan ukur. Contoh lebih mudahnya begini, misal kamu punya barisan seperti ini 1, 3, 9, 27, … Dari barisan tersebut, kita bisa lihat antara suku pertama dengan suku kedua, antara suku kedua dan suku ketiga dan seterusnya selalu punya pengali yang tetap, yaitu 3. Dengan demikian, barisan ini termasuk barisan geometri. Nah, kalau barisan ini dituliskan dalam bentuk penjumlahan, namanya jadi deret geometri. Deret geometri itu bentuk penjumlahan dari barisan geometri. Penulisannya adalah seperti ini 1 + 3 + 9 + 27 + … Paham ya, bedanya barisan dan deret? Lalu, kalau deret geometri tak hingga itu apa? Deret geometri tak hingga hampir sama dengan deret geometri, namun deret tersebut diteruskan hingga nilainya tak hingga. Nanti kita bahas lebih lanjut ya, supaya kamu bisa lebih paham. Sekarang, kita bahas mulai dari barisan dan deret geometri dulu, yuk! Lalu selanjutnya kita akan bahas tentang deret geometri tak hingga. Barisan Geometri dan Deret Geometri Tadi, kita sudah mengenal pengertian serta contoh dari barisan geometri dan deret geometri. Sekarang, kita belajar rumus-rumusnya, ya! Pada barisan geometri dan deret geometri, terdapat tiga rumus yang harus kamu ketahui, yaitu rumus rasio, rumus Un, dan rumus Sn. Kita bahas satu per satu, ya! 1. Rumus Rasio pada Barisan dan Deret Geometri Rasio adalah nilai pengali pada barisan dan deret. Rumus untuk mencari rasio pada barisan geometri dan deret geometri adalah seperti infografis berikut. Misalnya kita punya barisan geometri 1, 3, 9, 27, 81, …. Suku pertama a dari barisan geometri tersebut adalah 1. Maka r-nya adalah Jadi, rasio dari barisan geometri tersebut adalah 3. Sekarang kita pelajari rumus suku ke–n Un, yuk! 2. Rumus Un pada Barisan dan Deret Geometri Un adalah suku ke-n pada barisan dan deret. Untuk mencari Un pada barisan geometri dan deret geometri, kamu bisa menggunakan rumus berikut ini. Misalnya kita punya barisan geometri 1, 3, 9, 27, 81, …. Lalu, kita coba cari Un nya. Misalnya n yang mau dicari adalah 6, maka Un = arn-1 U6 = ar5 U6 = 1 . 35 U6 = 1 . 243 U6 = 243 Jadi, U6 dari barisan geometri tersebut adalah 243. Mudah kan, rumusnya? Syaratnya adalah kamu harus mengetahui berapa nilai a dan r-nya. Dengan begitu, kamu sudah bisa mencari Un dengan mudah. Sekarang, kita cari tahu rumus selanjutnya yuk! 3. Rumus Sn pada Barisan dan Deret Geometri Sn adalah jumlah suku ke-n pada barisan dan deret. Nah, bagaimana cara kita mencari tau Sn pada barisan geometri dan deret geometri? Berikut ini adalah rumusnya. Check it out! Misalnya kita punya barisan geometri 1, 3, 9, 27, 81, …. Lalu, kita coba cari Sn nya. Misalnya n yang mau dicari adalah 3, maka Jadi, S3 dari barisan geometri tersebut adalah 13. Oke, itu dia rumus Sn dalam barisan geometri dan deret geometri. Nah sekarang, kita lanjut bahas tentang deret geometri tak hingga, yuk! Baca juga Barisan Aritmatika Bertingkat Deret Geometri Tak Hingga Deret geometri tak hingga itu dibagi menjadi 2 jenis yaitu deret geometri tak hingga divergen dan deret geometri tak hingga konvergen. Keduanya memiliki perbedaan yang cukup penting. Yuk, kita lihat pengertian dari kedua jenis deret geometri tak hingga tersebut beserta perbedaannya! 1. Deret Geometri Tak Hingga Divergen Deret geometri tak hingga divergen adalah suatu deret yang nilai bilangannya semakin membesar dan tidak bisa dihitung jumlahnya. Bisa kita lihat seperti di bawah ini, 1 + 3 + 9 + 27 + 81 + …………… Kalau ditanya berapa sih, jumlah seluruhnya? Jumlah seluruhnya tidak bisa dihitung karena nilainya semakin besar. 2. Deret Geometri Tak Hingga Konvergen Berbeda dengan deret geometri tak hingga divergen, deret geometri tak hingga konvergen merupakan suatu deret di mana nilai bilangannya semakin mengecil dan dapat dihitung jumlahnya. Seperti di bawah ini Semakin lama nilainya semakin mengecil dan ujungnya akan mendekati angka 0. Hal ini membuat deret geometri tak hingga konvergen dapat dihitung jika ditanyakan jumlah seluruhnya. Lalu bagaimana cara menghitung jumlah seluruhnya dari deret geometri tak hingga konvergen? 3. Rumus Stak hingga pada Deret Geometri Tak Hingga Konvergen Sebelum masuk ke rumus, ada syarat terlebih dahulu jika kamu bertemu dengan deret geometri tak hingga konvergen, yaitu rasionya harus bernilai antara -1 sampai 1 -1 > r > 1 dan ini berlaku untuk negatif dan positif. Contohnya seperti deret di atas. Deret di atas rasionya adalah sehingga bisa dihitung jumlah tak hingganya. Nah, sekarang kita lihat yuk rumus untuk menghitung Stak hingga atau jumlah tak hingganya! Misalnya kita punya deret geometri tak hingga konvergen Lalu, kita coba cari Stak hingga nya, maka Jadi, Stak hingga darideret geometri tak hingga konvergen tersebut adalah . Itu dia penjelasan tentang barisan geometri, deret geometri, serta deret geometri tak hingga. Bagaimana, teman-teman? Kamu sudah paham, kan? Atau kamu masih belum puas dengan penjelasannya? Hmm tenang, kamu bisa nih, belajar melalui video animasi di ruangbelajar. Di sana, kamu bisa belajar sekaligus latihan soal-soal. Selain itu, waktu belajar kamu akan lebih efektif, dan tidak akan menyita waktu bermain kamu. Jadiii tunggu apa lagi? Buruan downloadaplikasi ruangguru! Referensi Wirodikromo, S. dan Darmanto, M. 2019 Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. Jakarta Erlangga. Artikel ini telah diperbarui pada 20 Oktober 2022.
Akarakar persamaan kuadrat x 2 −9x + 20 = 0 adalah p dan q dimana p < q. Akar-akar persamaan kuadrat 4x 2 −29x + 25 = 0 adalah r dan s dimana r > s. Susunan akar-akar kedua persamaan tersebut yang membentuk deret geometri adalah.
Berikut ini penulis sajikan soal-soal beserta pembahasannya tentang soal cerita aplikasi mengenai barisan dan deret geometri. Soal-soal ini dikumpulkan dari berbagai sumber termasuk soal UN maupun SBMPTN. Soal juga dapat diunduh melalui tautan berikut Download PDF, 117 KB. Baca Juga Soal dan Pembahasan – Aplikasi Soal Cerita Barisan dan Deret Aritmetika Today Quote “2get” and “2give” create many problems. So, just double it. “4get” and “4give” solve many problems. Bagian Pilihan Ganda Soal Nomor 1 Hasil produksi kerajinan seorang pengusaha setiap bulannya meningkat mengikuti aturan barisan geometri. Produksi pada bulan pertama sebanyak $150$ unit kerajinan dan pada bulan keempat sebanyak $ kerajinan. Hasil produksi selama $5$ bulan adalah $\cdots$ unit kerajinan. A. $ D. $ B. $ E. $ C. $ Pembahasan Diketahui $a = 150$ dan $\text{U}_4 = Rasio barisan geometri ini dapat ditentukan dengan melakukan perbandingan antarsuku sebagai berikut. $\begin{aligned} \dfrac{\text{U}_4}{\text{U}_1} & = \dfrac{ \\ \dfrac{\cancel{a} r^3}{\cancel{a}} & = 27 \\ r^3 & = 27 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_5 & = \dfrac{1503^5 -1} {3 -1} \\ & = \dfrac{150243 -1}{2} \\ & = 75 \cdot 242 = \end{aligned}$ Jadi, hasil produksi selama $5$ bulan adalah $\boxed{ unit kerajinan. Jawaban B [collapse] Soal Nomor 2 Seutas tali dipotong menjadi $4$ bagian, masing-masing membentuk barisan geometri. Jika potongan tali terpendek adalah $2$ cm dan potongan tali terpanjang adalah $54$ cm, panjang tali semula adalah $\cdots$ cm. A. $60$ C. $80$ E. $100$ B. $70$ D. $90$ Pembahasan Panjangnya setiap potongan tali merupakan suku-suku dalam barisan geometri, dengan $\text{U} _1 = a = 2$ dan $\text{U}_4 = 54$. Dalam hal ini, akan dicari $\text{S}_4 = \text{U}_1 + \text{U}_2 + \text{U}_3 + \text{U}_4.$ Langkah pertama adalah menentukan rasionya. $\begin{aligned} \text{U}_4 & = ar^3 \\ 54 & = 2r^3 \\ 27 & = r^3 \\ r & = \sqrt[3]{27} = 3 \end{aligned}$ Jadi, rasio barisannya adalah $3$. Untuk itu, didapat $\text{U}_2 = ar = 2 \cdot 3 = 6$ dan $\text{U}_3 = ar^2 = 2 \cdot 3^2 = 18.$ Dengan demikian, $\text{S}_4 = 2 + 6 + 18 + 54 = 80.$ Jadi, panjang tali semula sebelum dipotong adalah $\boxed{80~\text{cm}}$ Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Geometri Soal Nomor 3 Pesawat terbang melaju dengan kecepatan $300$ km/jam pada menit pertama. Kecepatan pada menit berikutnya $1\dfrac12$ kali dari kecepatan sebelumnya. Panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\cdots \cdot$ A. $ km D. $ km B. $ km E. $ km C. $ km Pembahasan Kecepatan pesawat tiap menitnya membentuk barisan geometri. Diketahui $a = 300$ dan $r= 1\dfrac12 = \dfrac32.$ Ditanya $\text{S}_4$ Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{ar^n-1} {r-1} \\ \text{S}_4 & = \dfrac{300\left\left\dfrac32\right^4 -1\right} {\dfrac32 -1} \\ & = \dfrac{300\left\dfrac{81}{16} -\dfrac{16}{16}\right} {\dfrac12} \\ & = 300 \cdot \dfrac{65}{16} \cdot 2 = \end{aligned}$ Jadi, panjang lintasan seluruhnya dalam $4$ menit pertama adalah $\boxed{ Jawaban A [collapse] Soal Nomor 4 Sejak tahun $2018$, terjadi penurunan pengiriman surat dari kantor pos. Setiap tahunnya banyak surat yang dikirim berkurang sebesar $\dfrac15$ dari banyak surat yang dikirim pada tahun sebelumnya. Jika pada tahun $2018$ dikirim sekitar $1$ juta surat, maka jumlah surat yang dikirim selama kurun waktu $2018 – 2022$ adalah $\cdots$ juta surat. A. $\dfrac{2101}{625}$ D. $\dfrac{365}{125}$ B. $\dfrac{369}{125}$ E. $\dfrac{360}{125}$ C. $\dfrac{2100}{625}$ Pembahasan Kasus di atas merupakan kasus barisan dan deret geometri. Diketahui $a = 1$ dalam satuan juta. Karena banyak surat berkurang sebesar $\dfrac15$ tiap tahunnya, maka pada tahun berikutnya, banyak surat menjadi $1 -\dfrac15 = \dfrac45$ sehingga rasionya adalah $r = \dfrac45$. Kurun waktu dari tahun $2018$ sampai $2022$ selama $5$ tahun sehingga $n = 5$. Dengan demikian, $\begin{aligned} \text{S}_n & = \dfrac{a1-r^n} {1-r} \\ \text{S}_5 & = \dfrac{1\left1 -\left\dfrac45\right^5 \right} {1 – \dfrac45} \\ & = \dfrac{1- \dfrac{ {\dfrac15} \\ & = \dfrac{ \times \cancel{5} = \dfrac{ \end{aligned}$ Jadi, jumlah surat yang dikirim selama kurun waktu $2018 -2022$ adalah $\boxed{\dfrac{ juta surat. Jawaban A [collapse] Baca Juga Soal dan Pembahasan – Deret Geometri Tak Hingga Soal Nomor 5 Dua orang anak sedang melakukan percobaan matematika dengan menjatuhkan sebuah bola dari lantai $2$ rumah mereka. Ketinggian bola dijatuhkan adalah $9$ meter dari atas tanah. Dari pengamatan, diketahui bahwa pantulan bola mencapai $\dfrac89$ dari tinggi pantulan sebelumnya. Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\cdots$ m. A. $4,00$ D. $4,75$ B. $4,25$ E. $5,00$ C. $4,50$ Pembahasan Kasus ini merupakan kasus barisan geometri. Tinggi pantulan pertama adalah $9 \times \dfrac89 = 9$ meter. Dengan demikian, diketahui $\text{U}_1 = 9$ dan $r = \dfrac89.$ Ditanya $\text{U}_5.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_5 & = 9\left\dfrac89 \right^{5-1} \\ & = \dfrac{8^5}{9^4} \approx 5 \end{aligned}$ Ketinggian bola setelah pantulan ke-$5$ yang paling mendekati adalah $\boxed{5~\text{m}}$ Jawaban E [collapse] Soal Nomor 6 Bakteri A berkembang biak menjadi dua kali lipat setiap lima menit. Setelah $15$ menit, banyak bakteri ada $400$. Banyak bakteri setelah $30$ menit adalah $\cdots \cdot$ A. $800$ D. $ B. $ E. $ C. $ Pembahasan Misalkan $\text{U}_1$ menyatakan banyaknya bakteri mula-mula $0$ menit, $\text{U}_2$ saat $5$ menit, $\text{U}_3$ saat $10$ menit, dan seterusnya. Diketahui $\text{U}_4 = ar^3 = 400$ dan $r = 2.$ Ditanya $\text{U}_7$. Dengan demikian, didapat $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_7 & = ar^6 \\ & = ar^3r^3 \\ & = 4002^3 = 4008 = \end{aligned}$ Banyak bakteri setelah $30$ menit adalah $\boxed{ Jawaban D [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Versi HOTS/Olimpiade Soal Nomor 7 Chandra mengambil sebotol air dari Laut Mati yang berisi $50$ archaebacteria untuk dikembangbiakkan di laboratorium. Andaikan satu archaebacteria mulai menggandakan diri setiap $25$ menit, berapa jumlah banyaknya archaebacteria selama $5$ jam? A. $ D. $ B. $ E. $ C. $ Pembahasan Banyaknya archaebacteria setiap 25 menit membentuk barisan geometri dengan banyak mula-mula $a = 50$ dan rasio $r = 2$ karena menggandakan diri. Perhatikan bahwa dalam waktu $5$ jam setara dengan $300$ menit, archaebacteria mengalami penggandaan diri sebanyak $\dfrac{300}{25} = 12$ kali. Artinya, kita mencari suku ke-$13$ perlu ditambah $1$ yang merepresentasikan banyak archaebacteria selama $5$ jam. $$\begin{aligned} \text{U}_{n} & = ar^{n-1} \\ \text{U}_{13} & = 50 \cdot 2^{13-1} \\ & = 50 \cdot 2^{12} \\ & = 50 \cdot = \end{aligned}$$Jadi, banyaknya archaebacteria selama $5$ jam adalah $\boxed{ Jawaban C [collapse] Soal Nomor 8 Keuntungan sebuah percetakan setiap bulannya bertambah menjadi dua kali lipat dari keuntungan bulan sebelumnya. Jika keuntungan bulan pertama maka keuntungan percetakan tersebut pada bulan keenam adalah $\cdots \cdot$ A. B. C. D. E. Pembahasan Kasus di atas adalah masalah kontekstual terkait barisan geometri dengan $a = dan $r = 2$. Dalam hal ini, akan dicari nilai dari $\text{U}_6.$ $\begin{aligned} \text{U}_n & = ar^{n-1} \\ \text{U}_6 & = \cdot 2^{6-1} \\ & = \cdot 2^5 \\ & = \cdot 32 = \end{aligned}$ Jadi, keuntungan percetakan tersebut pada bulan keenam adalah Jawaban B [collapse] Soal Nomor 9 Pertambahan penduduk setiap tahun suatu desa mengikuti aturan barisan geometri. Pertambahan penduduk pada tahun $2010$ sebesar $24$ orang dan pada tahun $2012$ sebesar $96$ orang. Pertambahan penduduk pada tahun $2015$ adalah $\cdots$ orang. A. $687$ C. $766$ E. $876$ B. $768$ D. $867$ Pembahasan Misalkan pertambahan penduduk pada tahun $2010$ disimbolkan sebagai $\text{U}_1 =a = 24$. Dengan demikian, diperoleh $\begin{aligned} \text{U}_3 & = ar^2 \\ 24r^2 & = 96 \\ r^2 & = \dfrac{96}{24} = 4 \\ r & = 2. \end{aligned}$ Pertambahan penduduk pada tahun $2015$ adalah $\boxed{\text{U}_6 = ar^5 = 242^5 = 768~\text{orang}}$ Jawaban B [collapse] Soal Nomor 10 Pertambahan pengunjung sebuah hotel mengikuti barisan geometri. Pada tahun $2015$ pertambahannya $42$ orang dan pada tahun $2017$ pertambahannya $168$ orang. Pertambahan pengunjung hotel tersebut pada tahun $2020$ adalah $\cdots \cdot$ A. $ orang D. $472$ orang B. $762$ orang E. $336$ orang C. $672$ orang Pembahasan Misalkan pertambahan pengunjung hotel pada tahun $2015$ disimbolkan sebagai $\text{U}_1 =a = 42$. Dengan demikian, pertambahan pengunjung hotel pada tahun $2017$ adalah $\text{U}_3 = 168$. Selanjutnya, akan dicari rasio barisan geometri tersebut. $\begin{aligned} \text{U}_3 & = ar^2 \\ 42r^2 & = 168 \\ r^2 & = \dfrac{168}{42} = 4 \\ r & = 2 \end{aligned}$ Pertambahan pengunjung hotel pada tahun $2020$ adalah $\text{U}_6 = ar^5 = 422^5 = \boxed{1344~\text{orang}}$ Jawaban A [collapse] Soal Nomor 11 Hasil observasi pada penderita suatu penyakit tertentu, ditemukan bakteri yang menyebabkan luka pada bagian kaki penderita akan semakin melebar. Untuk mencegah pertumbuhan dan sekaligus mengurangi jumlah bakteri hingga sembuh, penderita diberikan obat khusus yang diharapkan dapat mengurangi bakteri sebanyak $20\%$ pada setiap tiga jamnya. Jika pada awal observasi jam terdapat sekitar $ bakteri dan langsung diberikan obat yang pertama, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $\cdots \cdot$ A. $100$ bakteri D. $ bakteri B. $ bakteri E. $ bakteri C. $ bakteri Pembahasan Misalkan $\text{U}_1$ menyatakan banyak bakteri pada saat jam $\text{U}_2$ saat jam sampai $\text{U}_5$ saat jam Karena jumlah bakteri berkurang sebesar $20\%$, maka jumlah bakteri saat jam tertentu dapat ditentukan dengan menggunakan konsep barisan geometri dengan suku pertama $\text{U}_1 = dan $r = 1-20\% = 80\% = \dfrac45$. Akan dicari $\text{U}_5$. $\begin{aligned} \text{U}_5 & = ar^4 \\ & = \times \left\dfrac45\right^4 \\ & = \cancel{5^4} \times 10 \times \dfrac{4^4}{\cancel{5^4}} \\ & = 10 \times 256 = \end{aligned}$ Jadi, perkiraan jumlah bakteri setelah pemberian obat pada pukul adalah $ bakteri. Jawaban C [collapse] Baca Juga Soal dan Pembahasan – Barisan dan Deret Aritmetika
Perbedaanmendasar barisan geometri dengan deret geometri adalah tanda penjumlahan. Dalam deret, kita akan diajak untuk menemukan hasil dari penjumlahan suku-sukunya. Bentuk umum dan rumus. Simpelnya, komponen pembentuk deret geometri ini sama dengan barisan geometri, yaitu: Suku pertama (a) Rasio (r) – hasil bagi; Suku ke-n (U n) S n
Apa sih bedanya barisan aritmetika dengan deret aritmetika itu? Nah, di artikel Matematika kelas 11 kali ini, kita kupas tuntas mulai dari pengertian, rumus, hingga latihan soalnya untuk menambah pemahaman kamu. — Pernahkah kamu terpikir, mengapa kita harus mempelajari barisan dan deret aritmetika dalam pelajaran matematika, ya? Memang apa sih manfaatnya? Hmm, pertanyaan seperti itu pasti akan muncul tiap kita merasa kesulitan dengan suatu topik pelajaran, apalagi matematika kan? Hayooo ngaku! Nah, sekarang kamu akan tahu betapa pentingnya memahami topik ini. Manfaatnya banyak banget! Khususnya untuk pekerjaanmu di masa depan. Penasaran? Yuk, baca penjelasannya di bawah ini! Konsep Barisan dan Deret Barisan dan deret dalam matematika memiliki manfaat yang banyak dalam kehidupan sehari-hari. Ketika kamu ingin menjadi seorang pengusaha misalnya, perkembangan usaha yang konstan dari waktu ke waktu mengikuti baris hitung, lho! Kamu jadi bisa memprediksikan skala keuntungan atau kerugian yang akan kamu hadapi. Secara umum, barisan adalah sebuah daftar bilangan yang mengurut dari kiri ke kanan. Setiap urutan bilangannya juga memiliki karakteristik atau pola tertentu. Setiap bilangan yang ada pada barisan merupakan suku dalam barisan itu sendiri. Sementara itu, deret adalah penjumlahan suku-suku dari suatu barisan. Misalnya, terdapat barisan U1, U2, U3, U4, ….. Un, maka deret itu adalah U1 + U2 + U3 + U4 +….. Un. Oh iya, “U” itu artinya suku ya. Kalau Un berarti suku ke-n. Lalu, apa sih yang dimaksud dengan barisan dan deret aritmetika? Pengertian Barisan dan Deret Aritmetika Sebenarnya, materi barisan dan deret aritmetika sudah pernah kamu pelajari di kelas 8, ya. Di Blog Ruangguru juga sudah ada artikelnya nih, yang berjudul Bedanya Rumus Barisan dan Deret Aritmetika beserta Contoh Soalnya. Cuma, di artikel kelas 11 ini, materi yang dibahas bakal lebih luas lagi. Aritmetika dapat diartikan sebagai ilmu hitung dasar dalam matematika yang mencakup penjumlahan, pengurangan, pembagian, juga perkalian. Kamu harus ingat, nih, penyebutan yang betul adalah aritmetika’, bukan aritmatika! Kalau kita lihat pada bentuk barisan, jika selisih antara suku ke-1 dengan suku ke-2, dan seterusnya sama, maka dapat disebut barisan aritmetika. Dengan kata lain, barisan aritmetika adalah barisan bilangan yang memiliki selisih yang sama di antara suku-sukunya yang saling berdekatan. Selisih ini bisa kita sebut dengan beda, simbolnya b, ya. Kalau deret aritmetika adalah jumlah suku ke-n pertama pada barisan aritmatika. Misalnya, di suatu barisan memiliki suku pertama, yaitu 1. Suku pertama barisan aritmetika disimbolkan dengan U1 atau a. Lalu, di suku kedua U2, yaitu 4. Suku ketiga U3, yaitu 7, suku keempat U4, yaitu 10, dan seterusnya. Berarti, barisan ini memiliki beda, yaitu 3 pada setiap sukunya. Baca Juga Memahami Konsep Barisan Aritmetika Bertingkat Konsep Dasar, Rumus & Contoh Soal Rumus Barisan dan Deret Aritmetika beserta Contoh Sekarang, kita pahami rumusnya. Rumus barisan aritmetika bisa kamu gunakan untuk mencari suku ke-n Un. Sementara itu, rumus deret aritmetika berguna untuk mencari penjumlahan dari suku-suku tersebut. Oke, supaya kamu lebih mudah memahami rumusnya, kita langsung masuk ke contoh soal saja. Misalnya terdapat barisan bilangan 1, 3, 5, 7, 9, 11, … Maka, Suku pertama = U1 = a = 1 Suku kedua = U2 = 3 Suku kedua = U3 = 5 … dst sampai suku ke-n = Un Beda atau selisih suku pertama dengan suku kedua, suku kedua dengan suku ketiga, dan seterusnya b = U2 – U1 = 3 – 1 = 2 b = U3 – U2 = 5 – 3 = 2 b = U4 – U3 = 7 – 5 = 2 … dst Jadi, b = 2. Kita diminta mencari suku ke-n Un dari barisan bilangan tadi. Kalau semisal yang ditanya adalah suku ke-7 U7, caranya gampang ya, gais. Kamu tinggal tambahkan saja suku ke-6 U6 dengan nilai beda nya. b = U7 – U6 U7 = U6 + b U7 = 11 + 2 = 13 Tapi, bagaimana jika kita diminta untuk mencari suku ke-20, atau suku ke-35, atau suku ke-100? Sangat nggak efektif kalau kita jumlahkan satu per satu tiap suku dengan beda nya, ya. Oleh karena itu, kita membutuhkan rumus barisan aritmetika. Rumus Mencari Suku ke-n Un dan Beda b Sekarang, coba kita cari suku ke-20 menggunakan rumus di atas, ya! Un = a + n – 1b U20 = 1 + 20 – 12 U20 = 1 + U20 = 1 + 38 = 39 Jadi, suku ke-20 barisan aritmetika tersebut adalah 39. Lebih cepat, kan? Rumus Mencari Suku Tengah Ut Oh, iya, pada barisan aritmetika, kita bisa mencari suku tengahnya juga, loh! Wah, apa tuh maksudnya? Sesuai namanya, suku tengah adalah suku yang posisi/letaknya tepat berada di tengah-tengan barisan aritmetika. Tapi, ada syaratnya, nih. Suku tengah ini hanya bisa dicari jika banyak suku-sukunya ganjil. Rumus suku tengah barisan aritmetika adalah sebagai berikut Baca Juga Yuk, Pahami Konsep Barisan dan Deret Geometri! Contoh Terdapat barisan aritmetika 3, 6, 9, 12, …, 81 Tentukan nilai suku tengah dari barisan aritmetika tersebut! Tentukan suku ke berapakah yang menjadi suku tengah dari barisan aritmetika tersebut! Penyelesaian Diketahui a = 3 b = U2 – U1 = 6 – 3 = 3 Un = 81 Ditanya Ut dan t …? Jawab a. Ut Jadi, nilai suku tengah pada barisan aritmetika di atas adalah 42. b. t Jadi, suku ke-14 adalah suku tengah dari barisan aritmetika di atas. Rumus Sisipan Barisan Aritmetika Kalau tadi kan kasusnya kita mau mencari nilai suku tengah pada suatu barisan aritmetika. Gimana kalau sekarang kasusnya kita ubah! Misalnya, kita akan menyisipkan sejumlah bilangan ke dalam barisan aritmetika yang sudah ada. Pastinya, hal ini akan menyebabkan terbentuknya barisan aritmetika baru dong, ya. Contoh Kita punya barisan aritmetika sebagai berikut 1, 9, 17 Barisan tersebut memiliki banyak suku n = 3 dan beda b = 8. Kemudian, kita sisipkan 6 buah bilangan ke dalam barisan aritmetika di atas, sehingga 1, 3, 5, 7, 9, 11, 13, 15, 17 Jadi, terbentuklah barisan aritmetika baru dengan banyak suku n’ = 9 dan beda b’ = 2. Sampai sini paham ya dengan maksud sisipan pada barisan aritmetika? Oke, lanjut! Nah, kita bisa mencari banyak suku dan beda dari barisan aritmetika baru dengan rumus berikut ini Kita coba gunakan rumus di atas ke contoh soal ya, supaya kamu lebih mudah paham. Contoh Di antara bilangan 20 dan 116 disisipkan 11 bilangan, sehingga terbentuklah barisan aritmetika baru. Tentukan Beda barisan aritmetika baru Suku tengah barisan artimetika baru dan letaknya Suku ke-10 dari barisan aritmatika baru Pembahasan Diketahui a = a’ = 20 b = 116 – 20 = 96 k = 11 Un = Un’ = 116 n’ = k + n = 11 + 2 = 13 Ditanya b’, Ut, U10 …? Jawab a. b’ Jadi, nilai beda pada barisan aritmetika baru adalah 8. b. Ut Jadi, suku tengah pada barisan aritmetika baru adalah 68. c. U10 Jadi, suku ke-10 pada barisan aritmetika baru adalah 92. Well, cukup banyak ya rumus-rumus barisan aritmetika ini. Pusing, nggak? Dipahami baik-baik dan jangan lupa untuk berlatih soal supaya kamu semakin mahir lagi, nih. Sekarang, kita lanjut ke rumus deret aritmetika. Baca Juga Cara Mencari Determinan dan Invers Matriks, Bagaimana Ya? Rumus Deret Aritmetika Deret aritmetika adalah jumlah dari suku-suku barisan aritmetika. Maksudnya gimana? Misalnya, ada barisan aritmetika 1, 3, 5, 7, 9, 11, 13, … Lalu, kamu diminta untuk mencari jumlah 5 suku pertama dari barisan tersebut. Jadi 1 + 3 + 5 + 7 + 9 = 25 Balik lagi, kalau yang diminta jumlah sukunya sedikit, kita masih bisa menjumlahkannya secara manual dengan mudah, ya. Tapi, gimana kalau kamu diminta untuk mencari jumlah 100 suku pertama? Waduh, bisa gempor nggak, sih? HAHAHA… Oleh sebab itu, kita butuh rumus deret aritmetika! Kita langsung ambil contoh dari soal di atas, ya. Contoh Terdapat barisan aritmetika 1, 3, 5, 7, 9, 11, 13, … Tentukan berapa jumlah 100 suku pertamanya! Pembahasan Diketahui a = 1 b = 2 Ditanya Sn …? Jawab Jadi, jumlah 100 suku pertama dari barisan aritmetika tersebut adalah Contoh Penerapan Barisan dan Deret di Kehidupan Sehari-hari Seperti yang sudah dijelaskan di awal tadi, belajar barisan dan deret juga ada manfaatnya dalam kehidupan sehari-hari, lho! Contohnya untuk menghitung pertumbuhan penduduk, bunga majemuk, anuitas, dan masih banyak lagi. Hal penting yang perlu kamu ingat, semua ilmu itu pasti ada manfaatnya. Jadi, nggak ada alasan buat kamu untuk malas belajar materi ini, ya! Baca Juga Memahami Konsep Turunan Fungsi Aljabar secara Lengkap Oke, sampai di sini sudah paham belum? Kalau kamu ingin mendalami pemahamanmu tentang cara menghitung barisan dan deret aritmetika, kamu bisa belajar menggunakan video animasi bersama Master Teacher yang berpengalaman. Ada pula kumpulan soal-soal untuk menemanimu berlatih di mana saja dan kapan saja. Semua itu bisa kamu dapatkan melalui ruangbelajar di aplikasi Ruangguru. So, jangan lupa download, ya! Referensi Wirodikromo, S. dan Darmanto, M. 2019 Matematika untuk SMA/MA Kelas XI kelompok Wajib 2. JakartaErlangga.
k2Yqb. ae9cxl4n7s.pages.dev/178ae9cxl4n7s.pages.dev/437ae9cxl4n7s.pages.dev/51ae9cxl4n7s.pages.dev/404ae9cxl4n7s.pages.dev/315ae9cxl4n7s.pages.dev/7ae9cxl4n7s.pages.dev/256ae9cxl4n7s.pages.dev/352
aplikasi barisan dan deret geometri